Penetration Testing
Module 19

Engineered by Hackers. Presented by Professionals.
Researchers reveal attack code for new IE zero-day

Security researchers have released attack code that exploits an unpatched bug in Microsoft's Internet Explorer (IE) and sidesteps defenses baked into Windows 7. Microsoft said it was looking into the vulnerability.

"Microsoft is investigating new public claims of a possible vulnerability in Internet Explorer," said Dave Forstrom, the director of Microsoft's Trustworthy Computing group, in a statement. "We're currently unaware of any attacks trying to use the claimed vulnerability or of customer impact."

The bug first surfaced earlier this month when French security firm Vupen announced it had uncovered a flaw in IE's HTML engine that could be exploited when the browser processed a CSS (Cascading Style Sheets) file that included "@import" rules. The @import rules let Web designers add external style sheets to an existing HTML document.

Vupen issued a bare-bones advisory on Dec. 9 that confirmed the vulnerability in IE8 running on Windows XP, Vista and Windows 7, and in IE6 and IE7 on XP. Attackers could trigger the bug from a rigged Web page, then hijack the PCs to plant malware or pillage its secrets.

http://www.computerworld.com
Module Objectives

- Penetration Testing (PT)
- Security Assessments
- Risk Management
- Automated Testing
- Manual Testing
- Enumerating Devices

- Denial of Service Emulation
- HackerShield
- Pentest using Various Devices
- VigilENT
- WebInspect
- Tools
Module Flow

- Pen Testing Concepts
- Pen Testing Phases
- Pen Testing Tools
- Pen Testing Techniques
- Pen Testing Roadmap
- Outsourcing Pen Testing Services
- Types of Pen Testing

Copyright © by EC-Council
All Rights Reserved. Reproduction is Strictly Prohibited.
Introduction to Penetration Testing

A pentest simulates methods that intruders use to gain **unauthorized access** to an organization’s networked systems and then compromise them.

In the context of penetration testing, the tester is limited by resources—**namely time, skilled resources, and access to equipment**—as outlined in the penetration testing agreement.

Most attackers follow a **common approach** to penetrate a system.
Every organization uses different types of security assessments to validate the level of security on its network resources.

Security Assessment Categories

- Security Audits
- Vulnerability Assessments
- Penetration Testing

Each type of security assessment requires the people conducting the assessment to have different skills.
Vulnerability Assessment

1. Network Scanning
 Vulnerability assessment scans a network for known security weaknesses

2. Scanning Tools
 Vulnerability scanning tools search network segments for IP-enabled devices and enumerate systems, OS’s, and applications

3. Security Mistakes
 Additionally, vulnerability scanners can identify common security configuration mistakes

4. Test Systems/Network
 Vulnerability scanners can test systems and network devices for exposure to common attacks
Limitations of Vulnerability Assessment

1. Vulnerability scanning software is limited in its ability to detect vulnerabilities at a given point in time.

2. It must be updated when new vulnerabilities are discovered or modifications are made to the software being used.

3. This can influence the result of the assessment.

4. The methodology used as well as the diverse vulnerability scanning software packages assess security differently.
Penetration Testing

Penetration testing that is not completed professionally can result in the **loss of services** and disruption of the business continuity.

Penetration testing assesses the **security model** of the organization as a whole.

A penetration tester is differentiated from an attacker only by his **intent and lack of malice**.

It reveals **potential consequences** of a real attacker breaking into the network.
Why Penetration Testing?

- **Identify the threats** facing an organization's information assets
- **Reduce** an organization's IT security costs and provide a better **Return On IT Security Investment (ROSI)** by identifying and resolving vulnerabilities and weaknesses
- **Provide** an organization with assurance - a thorough and **comprehensive assessment** of organizational security covering policy, procedure, design and implementation
- **Gain** and maintain **certification** to an industry regulation (BS7799, HIPAA etc.)
- **Adopt best practice** by conforming to **legal and industry regulations**
- **For testing and validating the efficiency** of security protections and controls
- **It focuses** on high severity vulnerabilities and emphasizes **application-level security issues** to development teams and management
- **Providing comprehensive approach of preparation steps** that can be taken to prevent upcoming exploitation
- **Evaluating the efficiency of network security devices** such as firewalls, routers, and web servers
- **For changing or upgrading existing infrastructure of software, hardware, or network design**
What Should be **Tested**?

An organization should conduct a risk assessment operation before the penetration testing that will help to identify the main threats, such as:

- Communications failure, e-commerce failure, and loss of confidential information
- Public facing systems; websites, email gateways, and remote access platforms
- Mail, DNS, firewalls, passwords, FTP, IIS, and web servers

Note: Testing should be performed on all hardware and software components of a network security system.
What Makes a Good Penetration Test?

- Establishing the **parameters for the penetration test** such as objectives, limitations, and the justification of procedures
- Hiring **skilled and experienced professionals** to perform the test
- Choosing a **suitable set of tests** that balance cost and benefits
- Following a methodology with **proper planning** and documentation
- **Documenting the result** carefully and making it comprehensible for the client
- Stating the **potential risks and findings** clearly in the final report
ROI on Penetration Testing

Companies will spend on the pen-test only if they have a proper knowledge on the **benefits of the Pen-test**. Penetration testing helps the companies in identifying, understanding, and addressing the **vulnerabilities**, which saves them a lot of money resulting in **ROI**.

Demonstrate the ROI for Pen-test with the help of a business case scenario, which includes the **expenditure** and the **profits** involved in it. **Demonstration of ROI** is a critical process for the success in selling the Pen-test.
Testing Points

Organizations have to reach a consensus on the extent of information that can be divulged to the testing team to determine the starting point of the test.

Providing a penetration testing team with additional information may give them an unrealistic advantage.

Similarly, the extent to which the vulnerabilities need to be exploited without disrupting critical services, needs to be determined.
1. The pentest team may have a choice of doing the test either remotely or on-site.

2. A remote assessment may simulate an external hacker attack. However, it may miss assessing internal guards.

3. An on-site assessment may be expensive and may not simulate an external threat exactly.
Module Flow

- Pen Testing Concepts
- Pen Testing Techniques
- Pen Testing Phases
- Pen Testing Roadmap
- Outsourcing Pen Testing Services
- Types of Pen Testing
- Pen Testing Tools
Types of Penetration Testing

1. External Testing
 External testing involves analysis of **publicly available information**, a network enumeration phase, and the behavior of the security devices analyzed.

2. Internal Testing
 Internal testing will be performed from a number of **network access points**, representing each logical and physical segment:
 - Black-hat testing/zero-knowledge testing
 - Gray-hat testing/partial-knowledge testing
 - White-hat testing/complete-knowledge testing
 - Announced Testing
 - Unannounced Testing
External Penetration Testing

External penetration testing involves a comprehensive analysis of publicly available information about the target, such as:

1. It is the traditional approach to penetration testing
2. The testing is focused on the servers, infrastructure and the underlying software comprising the target
3. It may be performed with no prior knowledge of the site (black box)
4. Full disclosure of the topology and environment (crystal/white box)
Internal Security Assessment

Testing will be performed from a number of network access points, representing each logical and physical segment.

For example, this may include tiers and DMZs within the environment, the corporate network or partner company connections.

An internal security assessment follows a similar methodology to external testing, but provides a more complete view of the site security.
Black-box Penetration Testing

No prior knowledge of the infrastructure to be tested

You will be given just a company name

Penetration test must be carried out after extensive information gathering and research

This test simulates the process of a real hacker

It takes considerable amount of time allocated for the project on discovering the nature of the infrastructure and how it connects and interrelates

Time consuming and expensive type of test

Copyright © by EC-Council
All Rights Reserved. Reproduction is Strictly Prohibited.
Grey-box Penetration Testing

In a grey box test, the tester usually has a **limited knowledge of information**.

It performs **security assessment** and testing internally.

Approaches towards the **application security** that tests for all vulnerabilities which a hacker may find and exploit.

Performed mostly when a penetration tester starts a **black box test on well protected systems** and finds that a **little prior knowledge is required** in order to conduct a thorough review.
White-box Penetration Testing

- Complete knowledge of the **infrastructure** that needs to be tested is known
- This test simulates the process of **company’s employees**
- Information is provided such as

 - Company Infrastructure
 - Network type
 - Current security implementations
 - Company policies do’s and don’ts
 - IP address / firewall / IDS details
Announced Testing

- Is an attempt to compromise systems on the client with the full cooperation and knowledge of the IT staff
- Examines the existing security infrastructure for possible vulnerabilities
- Involves the security staff on the penetration testing teams to conduct audits

Unannounced Testing

- Is an attempt to compromise systems on the client networks without the knowledge of IT security personnel
- Allows only the upper management to be aware of these tests
- Examines the security infrastructure and responsiveness of the IT staff
Automated Testing

Automated testing can result in time and cost savings over a long term; however, it cannot replace an experienced security professional.

As with vulnerability scanners, there can be false negatives or worse, false positives.

With automated testing, there exists no scope for any of the architectural elements to be tested.

Tools can have a high learning curve and may need frequent updating to be effective.
Manual Testing

Manual testing is the best option an organization can choose to benefit from the experience of a security professional.

The objective of the professional is to assess the security posture of the organization from an attacker’s perspective.

A manual approach requires planning, test designing, scheduling, and diligent documentation to capture the results of the testing process.
Module Flow

- Pen Testing Concepts
- Pen Testing Phases
- Pen Testing Roadmap
- Pen Testing Tools
- Outsourcing Pen Testing Services
- Types of Pen Testing
- Pen Testing Techniques
<table>
<thead>
<tr>
<th>Technique</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passive Research</td>
<td>Is used to gather all the information about an organization's system configurations</td>
</tr>
<tr>
<td>Open Source Monitoring</td>
<td>Facilitates an organization to take necessary steps to ensure its confidentiality and integrity</td>
</tr>
<tr>
<td>Network Mapping and OS Fingerprinting</td>
<td>Is used to get an idea of the network's configuration being tested</td>
</tr>
<tr>
<td>Spoofing</td>
<td>Is the act of using one machine to pretend to be another. Is used here for both internal and external penetration tests</td>
</tr>
<tr>
<td>Network Sniffing</td>
<td>Is used to capture the data as it travels across a network</td>
</tr>
<tr>
<td>Trojan Attacks</td>
<td>Are malicious code or programs usually sent into a network as email attachments or transferred via “Instant Message” into chat rooms</td>
</tr>
<tr>
<td>A Brute-force Attack</td>
<td>Is the most commonly known password cracking method. Can overload a system and possibly stop it from responding to the legal requests</td>
</tr>
<tr>
<td>Vulnerability Scanning</td>
<td>Is a comprehensive examination of the targeted areas of an organization's network infrastructure</td>
</tr>
<tr>
<td>A Scenario Analysis</td>
<td>Is the final phase of testing, making a risk assessment of vulnerabilities much more accurate</td>
</tr>
</tbody>
</table>
Using **DNS Domain Name and IP Address Information**

1. Data from the DNS servers related to the target network can be used to map a target organization's network.

2. The IP block of an organization can be discerned by looking up the domain name and contact information for personnel.

3. The DNS record also provides some valuable information regarding the OS or applications that are run on the server.
Enumerating Information about Hosts on Publicly Available Networks

Additionally, the effort can provide screened subnets and a comprehensive list of the types of traffic that are allowed in and out of the network.

Website crawlers can mirror the entire sites.

Enumeration can be done using port scanning tools, IP protocols, and listening to TCP/UDP ports.

The testing team can then visualize a detailed network diagram that can be publicly accessed.
Phases of Penetration Testing

- Pre-Attack Phase
- Attack Phase
- Post Attack Phase
Pre-Attack Phase

- Pre-attack phase addresses the **mode of the attack** and the goals to be achieved
- Reconnaissance is considered as the first in the pre-attack phase and is an attempt to **locate, gather, identify, and record information** about the target
- Hacker seeks to find out as much information as possible about the victim
- Hackers gather information in different ways that allows them to **formulate a plan** of attack
- It is of two types:
 - **Passive Reconnaissance**
 - Involves collecting information about a target from the publicly accessible sources
 - **Active Reconnaissance**
 - Involves information gathering through social engineering, on-site visits, interviews, and questionnaires

Information retrieved in this phase:
- Competitive intelligence
- Network registration information
- DNS and mail server information
- Operating system information
- User’s information
- Authentication credentials information
- Analog connections
- Contact information
- Website information
- Physical and logical location of the organization
- Product range and service offerings of the target company that are available online
- Any other information that has the potential to result in a possible exploitation
Penetrate Perimeter
Acquire Target
Execute, Implant, Retract
Escalate Privileges
Activity: Perimeter Testing

Testing methods for perimeter security include but are not limited to:

- Checking access control lists by forging responses with crafted packets
- Evaluating protocol filtering rules by attempting connections using various protocols such as SSH, FTP, and Telnet
- Examining the perimeter security system’s response to web server scans using multiple methods such as POST, DELETE, and COPY
- Evaluating error reporting and error management with ICMP probes
- Measuring the threshold for denial of service by attempting persistent TCP connections, evaluating transitory TCP connections, and attempting to stream UDP connections
- Evaluating the IDS’s capability by passing malicious content (such as malformed URL) and scanning the target variously for responding to abnormal traffic
A device inventory is a collection of network devices together with some relevant information about each device that is recorded in a document.

After the network has been mapped and the business assets identified, the next logical step is to make an inventory of the devices.

A physical check may be conducted additionally to ensure that the enumerated devices have been located.
Activity: Acquiring Target

Acquiring a target refers to the set of activities undertaken where the tester subjects the suspect machine to more intrusive challenges such as vulnerability scans and security assessment.

Testing methods for acquiring target include but are not limited to:

- **Active probing assaults:**
 Use results of the network scans to gather further information that can lead to a compromise.

- **Running vulnerability scans:**
 Vulnerability scans are completed in this phase.

- **Trusted systems and trusted process assessment:**
 Attempting to access the machine’s resources using legitimate information obtained through social engineering or other means.
Activity: Escalating Privileges

Once the target has been acquired, the tester attempts to exploit the system and gain greater access to the protected resources.

Activities include (but are not limited to):

- The tester may take advantage of poor security policies and take advantage of email or unsafe web code to gather information that can lead to escalation of privileges.
- Use of techniques such as brute force to achieve privileged status. Examples of tools include get admin and password crackers.
- Use of Trojans and protocol analyzers.
- Use of information gleaned through techniques such as social engineering to gain unauthorized access to the privileged resources.
Activity: **Execute, Implant, and Retract**

Compromise System
In this phase, the tester effectively *compromises* the acquired system by executing the arbitrary code.

Penetrate System
The objective of system penetration is to *explore the extent* to which the security fails.

Execute Exploits
Execute Exploits already available or specially crafted to take *advantage of the vulnerabilities identified* in the target system.
Post-Attack Phase and Activities

This phase is critical to any penetration test as it is the responsibility of the tester to restore the systems to their pre-test states.

Post-attack phase activities include some of the following:

- Removing all files uploaded on the system
- Cleaning all registry entries and removing vulnerabilities created
- Removing all tools and exploits from the tested systems
- Restoring the network to the pre-test state by removing shares and connections
- Analyzing all results and presenting the same to the organization
A pentest report will carry details of the incidents that have occurred during the testing process and the range of activities carried out by the testing team.

Broad areas covered include objectives, observations, activities undertaken, and incidents reported.

The team may also recommend corrective actions based on the rules of the engagement.
Penetration Testing Methodology

- Information Gathering
- Vulnerability Analysis
- External Penetration Testing
- Internal Network Penetration Testing
- Router and Switches Penetration Testing
- Wireless Network Penetration Testing
- Firewall Penetration Testing
- Password Cracking Penetration Testing
- IDS Penetration Testing
- Social Engineering Penetration Testing
- Stolen Laptops, PDAs and Cell Phones Penetration Testing
- Denial of Service Penetration Testing
- Application Penetration Testing
Penetration Testing Methodology

- Physical Security Penetration Testing
- Database Penetration Testing
- VoIP Penetration Testing
- War Dialing
- Virus and Trojan Detection
- Log Management Penetration Testing
- File Integrity Checking
- Bluetooth and Handheld Device Penetration Testing
- Communication System Penetration Testing
- Email Security Penetration Testing
- Security Patches Penetration Testing
- Data Leakage Penetration Testing

Copyright © by EC-Council
All Rights Reserved. Reproduction is Strictly Prohibited.
Application Security Assessment

- Even in a well-deployed and secured infrastructure, a weak application can expose the organization's crown jewels to unacceptable risk.

- Application Security Assessment is designed to identify and assess threats to the organization through bespoke, proprietary applications or systems.

- This test checks on application so that a malicious user cannot access, modify or destroy data or services within the system.
Web Application Testing - I

Input Validation
Tests include OS command injection, script injection, SQL injection, LDAP injection, and cross-site scripting.

Output Sanitization
Tests include parsing special characters and verifying error checking in the application.

Access Control
Checks for access to administrative interfaces, sends data to manipulate form fields, attempts URL query strings, changes values on the client-side script, and attacks cookies.
Web Application Testing - II

- Checking for Buffer Overflows
- Denial of Service
- Component Checking
- Data and Error Checking

Tests include attacks against stack overflows, heap overflows, and format string overflows.

It checks for security controls on web server/application components that might expose the web application to vulnerabilities.

It tests for DoS induced by malformed user input, user lockout, and application lockout due to traffic overload, transaction requests, or excessive requests on the application.

It checks for data-related security lapses such as storage of sensitive data in the cache or throughput of sensitive data using HTML.
Confidentiality Check

For applications using **secure protocols and encryption**, check for lapses in key exchange mechanism, adequate key length, and weak algorithms.

Session Management

It checks **time validity** of session tokens, length of tokens, expiration of session tokens while transiting from **SSL to non-SSL resources**, presence of any session tokens in the browser history or cache, and randomness of session ID (check for use of user data in generating ID).

Configuration Verification

It attempts to manipulate resources using **HTTP methods** such as DELETE and PUT, check for **version content availability** and any visible restricted source code in public domains, attempt directory and file listing, and test for known vulnerabilities and accessibility of administrative interfaces in servers and server components.
Network Security Assessment

- It scans the network environment for identifying vulnerabilities and helps to improve an enterprise’s security policy.

- It uncovers network security faults that can lead to data or equipment being exploited or destroyed by Trojans, denial of service attacks, and other intrusions.

- It ensures that the security implementation actually provides the protection that the enterprise requires when any attack takes place on a network, generally by “exploiting” a vulnerability of the system.

- It is performed by a team attempting to break into the network or servers.

Copyright © by EC-Council
All Rights Reserved. Reproduction is Strictly Prohibited.
Wireless/Remote Access Assessment addresses the security risks associated with an increasingly mobile workforce.
Methods for wireless testing include but are not limited to:

- Check if the access point’s default **Service Set Identifier** (SSID) is easily available. Test for “broadcast SSID” and accessibility to the LAN through this. Tests can include **brute forcing the SSID character string** using tools like Kismet.

- Check for **vulnerabilities in accessing the WLAN** through the wireless router, access point, or gateway. This can include verifying if the default Wired Equivalent Privacy (WEP) encryption key can be captured and decrypted.

- **Audit for broadcast beacon** of any access point and check all protocols available on the access points. Check if **Layer 2 switched networks** are being used instead of hubs for access point connectivity.

- Subject authentication to playback of previous authentications in order to check for **privilege escalation and unauthorized access**.

- Verify that **access is granted only to client machines** with registered MAC addresses.
Telephony Security Assessment

A telephony security assessment addresses **security concerns** relating to corporate voice technologies.

This includes abuse of PBXs by outsiders to route calls at the target’s expense, mailbox deployment and security, voice over IP (VoIP) integration, unauthorized modem use, and associated risks.
Social Engineering

- Social engineering addresses a **non-technical** kind of intrusion.
- It usually involves a scam; trying to gain the confidence of a trusted source by relying on the natural helpfulness of people as well as their weaknesses, appealing to their vanity, their authority and eavesdropping are natural techniques used.
Testing Network-Filtering Devices

The objective of the pentest team is to ascertain that all legitimate traffic flows through the filtering device.

Testers can also check for any remote login capability that might have been enabled.

Proxy servers may be subjected to stress tests to evaluate their ability to filter out unwanted packets.

Testing for default installations of the firewall can be done to ensure that default user IDs and passwords have been disabled or changed.
Denial of Service Emulation

- Emulating DoS attacks can be resource intensive.
- These tests are meant to check the effectiveness of anti-DoS devices.
- DoS attacks can be emulated using hardware.
- Some online sites simulate DoS attacks for a nominal charge.
Outsourcing Penetration Testing Services

Drivers for outsourcing pentest services

To get the network audited by an external agency to acquire an intruder’s point of view
The organization may require a specific security assessment and suggestive corrective measures

Professional liability insurance pays for settlements or judgments for which pen testers become liable as a result of their actions, or failure to perform professional services
It is also known as E&O insurance or professional indemnity insurance

Underwriting penetration testing
An organization sanctions a penetration test against any of its production systems after it agrees upon explicitly stated rules of engagement.

It must state the terms of reference under which the agency can interact with the organization.

It can specify the desired code of conduct, the procedures to be followed, and the nature of the interaction between the testers and the organization.
Determining the scope of the pentest is essential to decide if the test is a targeted test or a comprehensive test.

Comprehensive assessments are coordinated efforts by the pentest agency to uncover as much vulnerability as possible throughout the organization.

A targeted test will seek to identify vulnerabilities in specific systems and practices.
Pentest Service Level Agreements

A service level agreement is a contract that details the terms of service that an **outsourcer** will provide.

The bottom line is that SLAs define the minimum levels of availability from the testers and determine what actions will be taken in the event of **serious disruption**.

SLAs done by experts or professionals can include both **remedies** and **penalties**.
Penetration Testing Consultants

Hiring **qualified** penetration tester results in the **quality** of the penetration testing.

A penetration test of a corporate network will examine **numerous different hosts** (with a number of different operating systems), **network architecture, policies and procedures**.

Each area of the network must be examined **in-depth**.

Penetration testing skills cannot be obtained without years of experience in **IT fields**, such as development, systems administration, or consultancy.
Evaluating Different Types of Pentest Tools

- Reporting capabilities
- Cost
- Compatibility
- Platform
- Ease of use
Application Security Assessment Tool: WebScarab

It is a framework for analyzing applications that communicate using the HTTP and HTTPS protocols.
<table>
<thead>
<tr>
<th>Tools</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acunetix</td>
<td>http://www.acunetix.com</td>
</tr>
<tr>
<td>Wapiti</td>
<td>http://www.ict-romulus.eu</td>
</tr>
<tr>
<td>Netsparker</td>
<td>http://www.mavitusasecurity.com</td>
</tr>
<tr>
<td>Watcher</td>
<td>http://websecuritytool.codeplex.com</td>
</tr>
<tr>
<td>NStalker</td>
<td>http://nstalker.com</td>
</tr>
<tr>
<td>Websecurify</td>
<td>http://www.websecurify.com</td>
</tr>
<tr>
<td>skipfish</td>
<td>http://code.google.com</td>
</tr>
<tr>
<td>x5s</td>
<td>http://xss.codeplex.com</td>
</tr>
</tbody>
</table>
Network Security Assessment Tool: Angry IP scanner

Scans IP addresses as well as ports in any range

Features:
- NetBIOS information
- Favorite IP address ranges
- Web server detection
- Customizable openers

http://www.angryip.org

Copyright © by EC-Council
All Rights Reserved. Reproduction is Strictly Prohibited.
Network Security Assessment Tool: GFI LANguard

GFI LANguard is a network security scanner and patch management solution.

GFI LANguard assists in the areas:

- Patch management
- Vulnerability management
- Network and software auditing
- Assets inventory
- Change management
- Risk analysis and compliance

http://www.gfi.com
Wireless/Remote Access Assessment Tool: **Kismet**

It is an 802.11 layer2 wireless network detector, sniffer, and intrusion detection system.

Identifies networks by passively collecting packets.

Detects hidden networks and presence of nonbeaconing networks via data traffic.

http://www.kismetwireless.net

Certified Ethical Hacker (CEH)

ATHENA

Copyright © by EC-Council

All Rights Reserved. Reproduction is Strictly Prohibited.
Wireless/Remote Access Assessment Tools

<table>
<thead>
<tr>
<th>Tool</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aircrack</td>
<td>http://www.aircrack-ng.org</td>
</tr>
<tr>
<td>Airsnot</td>
<td>http://airsnort.shmoo.com</td>
</tr>
<tr>
<td>KisMAC</td>
<td>http://trac.kismac-ng.org</td>
</tr>
<tr>
<td>Netstumbler</td>
<td>http://www.stumbler.net</td>
</tr>
<tr>
<td>WiFi scanner</td>
<td>http://netsecurity.about.com</td>
</tr>
<tr>
<td>FakeAP</td>
<td>http://netsecurity.about.com</td>
</tr>
<tr>
<td>Blueauditor</td>
<td>http://www.wirelessnetworktools.com</td>
</tr>
</tbody>
</table>
Telephony Security Assessment Tool: Omnipeek

Omnipeek is a network analyzer offering real-time VoIP monitoring and analysis combined with Ethernet, Wireless, 10GbE, Gigabit, and WAN.
Telephony Security Assessment Tools

- VLANping
 http://www.hackingvoip.com

- VoIP Hopper
 http://sourceforge.net

- Voipong
 http://www.enderunix.org

- Vomit
 http://vomit.xtdnet.nl

- VoIPER
 http://voiper.sourceforge.net

- Vo²IP
 http://www.voipsa.org

- NSAUDITOR - SIP UDP Traffic Generator - Flooder
 http://www.nsauditor.com

- VolPaudit
 http://www.voipshield.com
Testing Network-Filtering Device Tool: Traffic IQ Professional

Traffic IQ Professional enables security professionals to audit and validate the behavior of security devices by generating the standard application traffic or attack traffic between two virtual machines.

Traffic IQ Professional can be used to assess, audit, and test the behavioral characteristics of any non-proxy packet-filtering device including:
- Application layer firewalls
- Intrusion detection systems
- Intrusion prevention systems
- Routers and switches

http://www.blade-software.com
A pentest simulates methods that intruders use to gain unauthorized access to an organization’s networked systems and then compromise them.

Security assessment categories are security audits, vulnerability assessments, and penetration testing.

Vulnerability scanners can test systems and network devices for exposure to common attacks.

Penetration testing reveals potential consequences of a real attacker breaking into the network.

Risk = Threat x Vulnerability

The Abyss Web server application is a small personal web server that can support HTTP/1.1 CGI scripts, partial downloads, caching negotiation, and indexing files.
Quotes

"All of the biggest technological inventions created by man - the airplane, the automobile, the computer - says little about his intelligence, but speaks volumes about his laziness."

- Mark Kennedy,
 An American Businessman and Politician